Chapter

Operators and Expressions

3.1 INTRODUCTION - " e

C supports a rich set of operators. We have already used several of them, suchas =, +, -, *, & and <.
An operator is a symbol that tells the computer to perform certain mathematical or logical manipula-
tions. Operators are used in programs to manipulate data and variables. They usually form a part of
the mathematical or logical expressions.
C operators can be classified into a number of categories. They include:
Arithmetic operators.
Relational operators.
Logical operators.
Assignment operators.
Increment and decrement operators.
Conditional operators.
Bitwise operators.
. Special operators.
An expression is a sequence of operands and operators that reduces to a single value. For example,

10+ 15

is an expression whose value is 25. The value can be any type other than void.

[V N SRS R S

® N o

3.2 ARITHMETIC OPERATORS

C provides all the basic arithmetic operators. They are listed in Table 3.1. The operators +, —, *, and
/ all work the same way as they do in other languages. These can operate on any built-in data type

52 Programming in ANSI C

allowed ix;(;,"' The unary minus operator, in effect, multiplies its single operand by — 1. Therefore, a
number preceded by a minus sign changes its sign.

Table 3.1 Arithmetic Operators

Operator Meaning
+ 'Addition or unary plus
Subtraction or unary minus
* Multiplication
/ Division

% Modulo division
Integer division truncates any fractional part. The modulo division operation produces the remain-
der of an integer division. Examples of use of arithmetic operators are:

a-b a+b
a*b a/b
a%b —-a*b

Here a andb are variables and are known as operands. The modulo division operator % cannot be
used on floating point data. Note that C does not have an operator for exponentiation. Older versions
of C does not support unary plus but ANSI C supports it.

Integer Arithmetic

When both the operands in a single arithmetic expression such as a+b are integers, the expression is
called an integer expression, and the operation is called integer arithmetic. Integer arithmetic al-
ways yields an integer value. The largest integer value depends on the machine, as pointed out earlier.
In the above examples, if a and b are integers, then fora = 14 and b = 4 we have the following results:

a-b =10
atb = 18
a*b = 56
a/b = 3(decimal part truncated)

a%b = 2 (remainder of division)
During integer division, if both the operands are of the same sign, the result is truncated towards
zero. If one of them is negative, the direction of trunction is implementation dependent. That is,
6/7=0and -6/-7 =0
but —6/7 may be zero or —1. (Machine dependent)

Similarly, during modulo division, the sign of the result is always the sign of the first operand (the
dividend). That is

“14%3 = -2
“14%-3 = -2
14%-3 = 2

Operators and Expressions I 53

Example 3.1] The program in Fig. 3.1 shows the use of intfeger arithmetic to convert
T agiven number of days into months and days.

Program
main ()

{

int months, days ;

printf("Enter days\n") ;
scanf("%d", &days) ;

months = days / 30 ;

days = days % 30 ;

printf("Months = %d Days = %d", months, days) ;
}

Qutput
Enter days
265
Months = 8 Days = 25
Enter days
364
Months = 12 Days = 4
Enter days
45

Months = 1 Days = 15

Fig. 3.1 Illustration of integer arithmetic

The variables months and days are declared as integers. Theretore, the statement
months = days/30;

truncates the decimal part and assigns the integer part to months, Similarly, the statement
days = days%30;

assigns the remainder part of the division to days. Thus the given number of days is converted into an
equivalent number of months and days and the result is printed as shown in the output.

Real Arithmetic

An arithmetic operation involving only real operands is called real arithmetic. A real operand may
assume values either in decimal or exponential notation. Since floating point values are rounded to
the number of significant digits permissible, the final value is an approximation of the correct result.
Ifx, y, and z are floats, then we will have:

x=6.0/7.0 =0.857143

y = 1.0/3.0 = 0.333333

54 Programming in ANSI C

z=-2.0/3.0 = -0.666667
The operator % cannot be used with real operands.

Mixed-mode Artthmetic

When one of the operands is real and the other is integer, the expression is called a mived-mode
arithmetic expression. If either operand is of the real type, then only the real operation is performed
and the result is always a real number. Thus

15/10.0 = 1.5
whereas
15/10 =1

More about mixed operations will be discussed later when we deal with the evaluation of expres-
sions.

3.3 RELATIONAL OPERATORS

We often compare two quantities and depending on their relation, take certain decisions. For exam-
ple. we may compare the age of two persons, or the price of two items, and so on. These comparisons
can be done with the help of relational operators. We have already used the symbol *<*, meaning
‘less than’. An expression such as

a<borl <20

containing a relational operator is termed as a relational expression. The value of a relational ex-
pression is either one or zero. It is one if the specified relation is true and zero if the relation is false.
For example

10 <20 is true
but
20 < 10 is false

C supports six relational operators in all. These operators and their meanings are shown in
Table 3.2.

Table 3.2 Relational Operators

Operator Meaning

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to
== is equal to

1= is not equal to

Operators and Expressions

55

A simple relational expression contains only one relational operator and takes the following form:

o d

refational operator ae-d

ae-1 and ae-2 are arithmetic expressions, which may be simple constants, variables or combination
of them. Given below are some examples of simple relational expressions and their values:

4.5<=10 TRUE
4.5<-10 FALSE
-35>=0 FALSE
10 < 7+5 TRUE

a+b = c+d TRUE only if the sum of values of a and b is equal to the sum of values of ¢

and d.

When arithmetic expressions are used on either side of a relational operator, the arithmetic expres-
sions will be evaluated first and then the results compared. That is, arithmetic operators have a higher
priority over relational operators.

Relational expressions are used in decision statements such asif and while to decide the course of
action of a running program. We have already used the while statement in Chapter 1. Decision state-
ments are discussed in detail in Chapters 5 and 6.

@ Relational Operator Complements

)

&

Among the six relational operators, each one is a complement of another opera-
tor.

> is complement of <=
< is complement of >=
== is complement of t=

We can simplify an expression involving the not and the less than operators
using the complements as shown below:

Actual one Simplified one

x<y) X >=Yy

Hx>y) X <=y

'(X'=y) X ==Y

Ix<=y) X >y

(x> =Yy) x <y

x == y) Xl=y y

3.4 LOGICAL OPERATORS

In addition to the relational operators, C has the following three logical operators.

&& meaning logical AND
I meaning logical OR
! meaning logical NOT SRINIVAS COLLEGE OF

PG MANAGEMENT STUDIES
ACC ml:ﬂll."li.”.l..g.‘l".ll"l snaese
CALL N®uioassscesessartianassraranonsencs

56 I Programming in ANSI C

The logical operators && and || are used when we want to test more than one condition and make
decisions. An example is:

a>b&&x==10
An expression of this kind, which combines two or more relational expressions, is termed as a
logical expression or a compound relational expression. Like the simple relational expressions, a
logical expression also yiclds a value of one or zero. according to the truth table shown in Table 3.3.
The logical expression given above is true only ifa >b is rrue and x == 10 is true. If either (or both)
of them are false. the expression is false.

Table 3.3 Truth Table

Value of the expression

op-1 op-2
op-1 && op-2 op-1 || op-2
Non-zero Non-zero | 1
Non-zero 0 0 1
0 Non-zero 0 1
0

0 0 0

Some examples of the usage of logical expressions are:
I, if (age > 55 && salary < 1000)
2. if (number < 0 || number > 100)
We shall see more of them when we discuss decision statements.

3.5 ASSIGNMENT OPERATORS

Assignment operators are used to assign the result of an expression to a variable. We have seen the
usual assignment operator, ‘=", In addition, C has a set of ‘shorthand’ assignment operators of the
form

T OpTT oexp:

Where v is a variable. exp is an expression and op is a C binary arithmetic operator. The operator
op= is known as the shorthand assignment operator.
The assignment statement

v op= exp;
is equivalent to
v =v op (exp);
with v evaluated only once. Consider an example
X += y+l;
This is saxgﬁas;tgeasr’t&r?)ené Avtm s
EIOUT? YUNORARD b 4

- E—. ua-u‘ﬂ-‘q}-‘\]

Operators and Expressions 57

The shorthand operator += means ‘add y+1 to x* or ‘increment x by y+1°. For y = 2, the above
statement becomes

X += 3;

and when this statement is executed, 3 is added to x. If the old value of x is, say 5, then the new value
of x is 8. Some of the commonly used shorthand assignment operators are illustrated in Table 3.4.

Table 3.4 Shorthand Assignment Operators

Statement with simple Statement with
assignnient operator shorthand operator
a=a-+1 a-+=1

a=a-| a-=1

a=a* (nt+l) a *=n+1
a=a/(nt+l) a/=nt+l

a=a%b a%=b

The use of shorthand assignment operators has three advantages:
I. What appears on the left-hand side need not be repeated and therefore it becomes easier to
write.
2. The statement is more concise and easier to read.
3. The statement is more efficient.
These advantages may be appreciated if we consider a slightly more involved statement like

value(5%j-2) = value(5*j-2) + delta;
With the help of the += operator, this can be written as follows:
value(5*j-2) += delta;

It is easier to read and understand and is more efficient because the expression 5*j-2 is evaluated
only once.

Example 3.2] Program of Fig. 3.2 prints a sequence of squares of numbers. Note the
— " use of the shorthand operator *= .

The program attempts to print a sequence of squares of numbers starting from 2. The statement
a *= a;
which is identical to
a = a*a;
replaces the current value of a by its square. When the value of a becomes equal or greater than N
(=100) the while is terminated. Note that the output contains only three values 2, 4 and 16.

58 I Programming in ANSI C

Program

#define N 100
-#define A 2
main()
{
int a;
a = A;
while(a < N)
{
printf("%d\n", a);
a *= a;

Fig. 3.2 Use of shorthand operator *=

3.6 INCREMENT AND DECREMENT OPERATORS

C allows two very useful operators not generally found in other languages. These are the increment
and decrement operators:

++ and - -
The operator ++ adds 1 to the operand, while — — subtracts 1. Both are unary operators and takes the
following form:

++tm; or mt+t;

—-m; or m—-—;

++m; is equivalent tom = m+l; (or m += 1;)

—-m; is equivalent tom = m-1; (or m —= 1;) _

We use the increment and decrement statements in for and while loops extensively.

While ++m and m++ mean the same thing when they form statements independently, they behave
differently when they are used in expressions on the right-hand side of an assignment statement.
Consider the following:

m=5;
y = ++m;

In this case, the value of y and m would be 6. Suppose, if we rewrite the above statements as

m=5;
Y = met;

Operators and Expressions l 59

then. the value of y would be 5 and m would be 6. 4 prefix operator first adds 1 to the operand and
then the result is assigned to the variable on left. On the other hand. a postfix operator first assigns
the value to the variable on left and then increments the operand.

Similar is the case, when we use ++ (or — —) in subscripted variables. That is, the statement

afi++] = 10;
is equivalent to
a[i] = 10;
i = i+l;
The increment and decrement operators can be used in complex statements. Example:
m = n++ —j+10;

Old value of n is used in evaluating the expression. n is incremented after the evaluation. Some
compilers require a space on either side of n++ or ++n.

@ Rules for ++ and — — Operators D

e Increment and decrement operators are unary operators and they require
variable as their operands.

e When postfix ++ (or —-) is used with a variable in an expression, the
expression is evaluated first using the original value of the variable and then
the variable is incremented (or decremented) by one.

e When prefix ++(or —-) is used in an expression, the variable is
incremented (or decremented) first and then the expression is evaluated
using the new value of the variable.

e The precedence and associatively of ++ and — — operators are the same as

@ those of unary + and unary —.)

37 CONDITIONAL OPERATOR

A ternary operator pair “? :” is available in C to construct conditional expressions of the form

expl ? exp2 : exp3

where expl, exp2, and exp3 are expressions.

The operator ? : works as follows: exp/ is evaluated first. If it is nonzero (true), then the expres-
sion exp? is evaluated and becomes the value of the expression. Ifexpl is false, exp3 is evaluated and
its value becomes the value of the expression. Note that only one of the expressions (either exp2 or
exp3) is evaluated. For example, consider the following statements.

a = 10;
b = 15;
x=(a>b) ?7a:hb;

60 I Programming in ANSI C

In this example, x will be assigned the value of b. This can be achieved using the if..else state-
ments as follows:

if (a > b)
X = a;
else
X = b;

3.8 BITWISE OPERATORS

C has a distinction of supporting special operators known as binwise operators for manipulation of
data at bit level. These operators are used for testing the bits, or shifting them right or left. Bitwise
operators may not be applied to floator double. Table 3.5 lists the bitwise operators and their mean-
ings. They are discussed in detail in Appendix I.

Table 3.5 Birwise Operators

Operator Meaning
& bitwise AND
| bitwise OR
n bitwise exclusive OR
<< shift left
>> shift right

3.9 SPECIAL OPERATORS

C supports some special operators of interest such as comma operator, sizeof operator, pointer opera-
tors (& and *) and member selection operators (. and —>). The comma and sizeof operators are
discussed in this section while the pointer operators are discussed in Chapter 11. Member selection
operators which are used to select members of a structure are discussed in Chapters 10 and 11. ANSI
‘committee has introduced two preprocessor operators known as “string-izing” and “token-pasting”
operators (# and ##). They will be discussed in Chapter 14.

The Comma Qperator

The comma operator can be used to link the related expressions together. A comma-linked list of
expressions are evaluated lefi to right and the value of right-most expression is the value of the
combined expression. For example, the statement

value = (x = 10, y = 5, x+y);

first assigns the value 10 to x, then assigns 5 toy, and finally assigns 15 (i.e. 10 + 5) to value. Since
comma operator has the lowest precedence of all operators, the parentheses are necessary. Some
applications of comma operator are:
In for loops:
for (n =1, m =10, n <=m; n++, m++)

Operators and Expressions 61

In while loops:

i

while (¢ = getchar(), ¢ != '10")

Exchanging values:

—+
n
>
.
>
il

Y, ¥y = 4
The sizeot Operator
The sizeof is a compile time operator and, when used with an operand, it returns the number of bytes

the operand occupies. The operand may be a variable, a constant or a data type qualifier.

Examples: m = sizeof(sum);
n = sizeof(long int);
k = sizeof(235L);

The sizeof operator is normally used to determine the lengths of arrays and structures when their
sizes are not known to the programmer. It is also used to allocate memory space dynamically to
variables during execution of a program.

Example 3.3] In Fig. 3.3, the program employs different kinds of operators. The results
of their evaluation are also shown for comparison.

Notice the way the increment operator ++ works when used in an expression. In the statement
c = ++a — b;

new value of a (= 16) is used thus giving the value 6 to c. That is, a is incremented by 1 before it is
used in the expression. However, in the statement

d = b++ + a;

the old value of b (=10) is used in the expression. Here, b is incremented by 1 after it is used in the
expression.

We can print the character % by placing it immediately after another % character in the control
string. This is illustrated by the statement

printf("a%%b = %d\n", a%b);
The program also illustrates that the expression
c>d?1:0

assumes the value 0 when c is less than d and 1 when c is greater than d.

Program

main()

{

int a, b, c, d;

a = 15;
b = 10;
C = ++ta - b;

printf("a = %d b = %d ¢ = %d\n",a, b, c);

62 I Programming in ANSI C

d = b++ +a;

printf("a = %d b = %d d = %d\n",a, b, d);
printf("a/b = %d\n", a/b);
printf("a%%b = %d\n", a%b):
printf("a *= b = %d\n", a*=

\ b);
printf("%d\n", (c>d) 2 1 : 0);
printf("%d\n", (c<d) 2 1 : 0);

w n
—
= O
a o0
[/}

(=)}

a *= = 176

Fig. 3.3 Further illustration of arithmetic operators

3.10 ARITHMETIC EXPRESSIONS

An arithmetic expression is a combination of variables, constants, and operators arranged as per the
syntax of the language. We have used a number of simple expressions in the examples discussed so
far. C can handle any complex mathematical expressions. Some of the examples of C expressions are
shown in Table 3.6. Remember that C does not have an operator for exponentiation.

Table 3.6 Expressions

Algebraic expression C expression
axb-c a*b-c
(m+n) (x+y) (m+n) * (x+y)
(itl] a* b/c
c :
3x? +2x+1 3EX*X+F2*x+]
X
[~] +c x/yte
y

3.11 EVALUATION OF EXPRESSIONS

Expressions are evaluated using an assignment statement of the form

Operators and Expressions 63
varable -« expression:

Variable is any valid C variable name. When the statement is encountered, the expression is evalu-
ated first and the result then replaces the previous value of the variable on the left-hand side. All
variables used in the expression must be assigned values before evaluation is attempted. Examples of
evaluation statements are

x=a*b - c;
y=b/c™*a;
z=a-b/c+d;

The blank space around an operator is optional and adds only to improve readability. When these
statements are used in a program, the variables a, b, ¢, and d must be defined before they are used in
the expressions.

Example 3.4] The program in Fig. 3.4 illustrates the use of variables in expressions
” and their evaluation.

Output of the program also illustrates the effect of presence of parentheses in expressions. This is
discussed in the next section.

Program

main()

{

float a, b, ¢, X, ¥, Z3

a=9;

b= 12;

c = 3;
x=a-b/3+c*2-1;
y=a-b/(3+c)*(2-1)
z=a-(b/ (3+¢c)*2) -1;

printf("x = %f\n", x);
printf("y = %f\n", y);
printf("z = %f\n", z);

}
Output
x = 10.000000
= 7.000000
z = 4.000000

Fig. 3.4 Illustrations of evaluation of expressions

64 I Programming in ANSIC
3.12 PRECEDENCE OF ARITHMETIC OPERATORS

An arithmetic expression without parentheses will be evaluated from lefi to right using the rules of
precedence of operators. There are two distinct priority levels of arithmetic operators in C:

High priority * / %
Low priority + —

The basic evaluation procedure includes *two’ left-to-right passes through the expression. During
the first pass, the high priority operators (if any) are applied as they are encountered. During the
second pass, the low priority operators (if any) are applied as they are encountered. Consider the
following evaluation statement that has been used in the program of Fig. 3.4.

X =a-b/3 +¢*2-1]
Whena =9,b=12, and ¢ = 3, the statement becomes
X =9-12/3 + 3*2—~]

and is evaluated as follows
First pass

Stepl: x = 9—-4+3*2—1]
Step2: x = 9—-4+6-1

Second pass

Step3: x = 5+6-1
Step4: x = 11-1
StepS: x =10

These steps are illustrated in Fig. 3.5. The numbers inside parentheses refer to step numbers.

1
9 - 12/3 + 3*2 -
| bri () ‘74 (2))
| 4 . ‘
|
f @) I 1
5 |
L I | (4) :
11 }
'L : ®)
10

Fig. 3.5 [Illustration of hierarchy of operations

However, the order of evaluation can be changed by introducing parentheses into an expression.
Consider the same expression with parentheses as shown below:

9-12/(3+3)*(2-1)

Operators and Expressions |65

Whenever parentheses are used, the expressions within parentheses asSume highest priority. If two
or more sets of parentheses appear one after another as shown above, the expression contained in the
left-most set is evaluated first and the right-most in the last. Given below are the new steps.

First pass
Stepl: 9-12/6 * (2-1)
Step2: 9-12/6 * |
Second pass
Step3:9-2* 1
Step4: 9-2
Third pass
StepS: 7
This time, the procedure consists of three left-to-right passes. However, the number of evaluation
steps remains the same as 5 (i.¢ equal to the number of arithmetic operators).
Parentheses may be nested. and in such cases, evaluation of the expression will proceed outward

from the innermost set of parentheses. Just make sure that every opening parenthesis has a matching
closing parenthesis. For example

9—-(12/(3+3)*2)-1=4
whereas
9—-((12/3)+3*2) -1 ==2

While parentheses allow us to change the order of priority, we may also use them to improve
understandability of the program. When in doubt, we can always add an extra pair just to make sure
that the priority assumed is the one we require.

/
Rules for Evaluation of Expression

e First, parenthesized sub expression from left to right are evaluated.

e If parentheses are nested, the evaluation begins with the innermost sub-ex-
pression.

e The precedence rule is applied in determining the order of application of
operators in evaluating sub-expressions

e The associativity rule is applied when two or more operators of the same
precedence level appear in a sub-expression.

e Arithmetic expressions are evaluated from left to right using the rules of
precedence.

e When parentheses are used, the expressions within parentheses assume
G highest priority.

J

66 | Programming in ANSI C

3.13 SOME COMPUTATIONAL PROBLEMS

When expressions include real values, then it is important to take necessary precautions to guard
against certain computational errors. We know that the computer gives approximate values for real
numbers and the errors due to such approximations may lead to serious problems. For example,
consider the following statements:

a=1.0/3.0;

b=a*3.0;

We know that (1.0/3.0) 3.0 is equal to 1. But there is no guarantee that the value of b computed in
a program will equal 1.

Another problem is division by zero. On most computers, any attempt to divide a number by zero
will result in abnormal termination of the program. In some cases such a division may produce mean-
ingless results. Care should be taken to test the denominator that is likely to assume zero value and
avoid any division by zero.

The third problem is to avoid overflow or underflow errors. It is our responsibility to guarantee

that operands are of the correct type and range. and the result may not produce any overflow or
underflow.

Example 3.5/ Output of the program in Fig. 3.6 shows round-off errors that can oc-

cur in computation of floating point numbers.

Program
/*—————— Sum of n terms of 1/n ————u—%/
main()
{
float sum, n, term ;
int count = 1 ;

sum = 0

printf("Enter value of n\n") ;
scanf("%f", &n) ;

term = 1.0/n ;

while(count <= n)

sum = sum + term ;
count++ ;

}

printf("Sum = %f\n", sum) ;

}
Output

Enter value of n
99

Sum = 1.000001
Enter value of n
143

Sum = 0.999999

Fig. 3.6 Round-off errors in floating point computations

Operators and Expressions 67

We know that the sum of n terms of 1/n is 1. However, due to ervors in floating point representa-
tion, the resuit is not always 1.

.04 PTYPE CONVERSIONS IN EXPRIENSIONS

vuphen Type Conversion

C permits mixing of constants and variables ot different types in an expression. C automatically
converts any intermediate values to the proper type so that the expression can be evaluated without
loosing any signiticance. This automatic conversion is known as implicit type conversion.

During evaluation it adheres to very strict rules of type conversion. If the operands are of different
types, the *lower’ type is automatically converted to the “higher’ type before the operation proceeds.
The result is of the higher type. A typical type conversion process is illustrated in Fig. 3.7,

'

; int i, X;
; float f;
doubie d;
long int 1
X = 1/ + I - d
A ! | ! i
. . .
long float
‘ P T :
3 ‘ Y_Y S . i
; ‘ fong float }
| T T |
| ‘ i i
i float -
| el e |
; b o float |
H [L
! L double —, Y
int <o e double

| - hetiid

TR A e < p e I T e i o L e e L B R B o AT R SR

Fig. 3.7 Process of implicit tvpe conversion

Given below is the sequence of rules that are applied while evaluating expressions.
All short and char are automatically converted to int: then
1. ifone of the operands is long double, the other will be converted to long double and the result
will be long double:
else, it one of the operands is double, the othier will be converted to double and the result will
be double;
else, if one of the operands 1s float, the other will be converted 1o float and the result will be
float:
4. else, 1f one of the operands 1s unsigned long int, the other wili be converted to unsigned long
int and the result will be unsigned long int;
5. else, if one of the operands is long int and the other s unsigned int, then
(a) ifunsigned int can be converted to long int. the unsigned int operand will be converted
as such and the result will be long int:

i

)

68 I Programming in ANSI C

(b) else, both operands will be converted to unsigned long int and the result will be un-
signed long int;
6. else, if one of the operands is long int, the other will be converted to leng int and the result
will be long int;
7. else, if one of the operands is unsigned int, the other will be converted to unsigned int and the
result will be unsigned int.

@ Conversion Hierarchy)
Note that, C uses the rule that, in all expressions except assignments,
any implicit type conversions are made from a lower size type to a
higher size type as shown below:
| T
Pl ; long double
// ~ double
float
Co'nversLon unsigned long int
Hierarchy S —
/ long int
e
e unsigned int
//
int
:I i short char

Note that some versions of C automatically convert all floating-point operands to double preci-
sion.

The tinal result of an expression is converted to the type of the variable on the left of the assign-
ment sign before assigning the value to it. However, the following changes are introduced during the
tinal assignment.

1. float to int causes truncation of the fractional part.
2. double to float causes rounding of digits.
3. long int to int causes dropping of the excess higher order bits.

LExplicit Conversion

We have just discussed how C performs type conversion automatically. However, there are instances
when we want to force a type conversion in a way that is different from the automatic conversion.
Consider, for example, the calculation of ratio of females to males in a town.,

ratio = female_number/male_number

Operators and Expressions ' 69

Since female_number and male_number are declared as integers in the program, the decimal
part of the result of the division would be lost and ratio would represent a wrong figure. This problem
can be solved by converting locally one of the variables to the floating point as shown below:

ratio = (float) female number/male number

The operator (float) converts the female_number to floating point for the purpose of evaluation
of the expression. Then using the rule of automatic conversion, the division is performed in floating
point mode, thus retaining the fractional part of result.

Note that in no way does the operator (float) affect the value of the variable female number. And
also. the type of female number remains as int in the other parts of the program.

The process of such a local conversion is known as explicit conversion or casting a value. The
general form of a cast is:

(Tvpe- rene) o aprossios)

Where type-name is one of the standard C data types. The expression may be a constant, variable or
an expression. Some examples of casts and their actions are shown in Table 3.7.

Table 3.7 Use bf Casts

Example Action

X = (int} 7.5 7.5 is converted to integer by truncation.

a = (int) 21.3/(int)4.5 Evaluated as 21/4 and the result would be 5.
b = (double)sum/n Division is done in floating point mode.

y = (int) (a+b) The result of a+b is converted to integer.

z = (int)a+b a is converted to integer and then added to b.
p = cos((double)x) Converts x to double before using it.

Casting can be used to round-off a given value. Consider the following statement:
x = (int) (y+0.5);

Ifyis27.6,y+0.5is 28.1 and on casting, the result becomes 28, the value that is assigned to x. Ot
course, the expression, being cast is not changed.

Example 3.6] Figure 3.8 shows a program using a cast fo evaluate the equation

sum = i(l/i)

i=1

Program

main()

{

float sum ;
int n ;

sum = 0 ;

70 Programming in ANSI C

for(n =13 n<=10 3 ++n)
{
sum = sum + 1/(float)n ;
printf("%2d %6.4f\n", n, sum) ;
}

Output

.0000
.5000
.8333
.0833
.2833
.4500
.5929
L7179
.8290
.9290

NN NN NN =

—
O W OO NOYO S WN

Fig. 3.8 Use of a cast

3,15 OPERATOR PRECEDENCE AND ASSOCIATIVITY

Each operator in C has a precedence associated with it. This precedence is used to determine how an
expression involving more than one operator is evaluated. There are distinct/evels of precedence and
an operator may belong to one of these levels. The operators at the higher level of precedence are
evaluated first. The operators of the same precedence are evaluated either from ‘lett to right” or from
‘right to left’, depending on the level. This is known as the associativity property of an operator.
Table 3.8 provides a complete list of operators, their precedence levels, and their rules of association.
The groups are listed in the order of decreasing precedence. Rank 1 indicates the highest precedence
level and 15 the lowest. The list also includes those operators, which we have not yet been discussed.

It is very important to note carefully, the order of precedence and associativity of operators. Con-
sider the following conditional statement:

if(x==10+15&& y < 10)

The precedence rules say that the addition operator has a higher priority than the logical operator
(& &) and the relational operators (== and <). Therefore, the addition of 10 and 15 is executed first.
This is equivalent to :

if (x == 25 && y < 10)

The next step is to determine whether x is equal to 25 and y is less than 10. If we assume a value
of 20 for x and 5 for y, then

x ==25is FALSE (0)
y <10is TRUE (1)

Note that since the operator < enjoys a higher priority compared to ==, y < 10 is tested first and
then x == 25 is tested.

Finally we get:

Because one of the conditions is FALSE, the complex condition is FALSE.

if (FALSE && TRUE)

Operators and Expressions l 71

In the case of &&, it is guaranteed that the second operand will not be evaluated if the first is zero

and in the case of ||, the second operand will not be evaluated if the first is non-zero.

Table 3.8 Summary of C Operators

Operator Description Associativity Rank
) Function call Left to right 1
] Aray element reference
+ Unary plus
- Unary minus Right to left 2
++ Increment
- - Decrement
! Logical negation
~ Ones complement
* Pointer reference (indirection)
& Address
sizeot Size of an object
(type) Type cast (conversion)
* Multiplication Left to right 3
! Division
% Modulus
+ Addition Left to right 4
- Subtraction
<< Left shift Left to right S
> Right shift
< Less than Left to right 6
La= Less than or equal to
Greater than
== Greater than or equal to
= Equality Left to right 7
= Inequality
& Bitwise AND Lett to right 8
~ Bitwise XOR Left to right 9
| Bitwise OR Left to right 10
&& Logical AND Left to right 11
! Logical OR Left to right 12
7 Conditional expression Right to left 13
= Assignment operators Right to left 14
* .- /": 0 0=
b &=

- =

Comma operator

Left to right

72 l Programming in ANSI C

Ca Rules of Precedence and Associativity)

¢ Precedence rules decides the order in which different operators are applied

¢ Associativity rule decides the order in which multiple occurrences of the
same level operator are applied

3.16 MATHEMATICAL FUNCTIONS

Mathematical functions such as cos, sqrt, log, etc. are frequently used in analysis of real-life prob-
lems. Most of the C compilers support these basic math functions. However, there are systems that
have a more comprehensive math library and one should consult the reference manual to find out
which functions are available. Table 3.9 lists some standard math functions.

Table 3.9 Math functions

Function Meaning
Trigonometric

acos(x) Arc cosine of x

asin(x) Arc sine of x

atan(x) Arc tangent ot x

atan 2(x,y) Arc tangent of x/y
Ccos(x) Cosine of x

sin(x) Sine of x

tan(x) Tangent of x
Hyperbolic

cosh(x) Hyperbolic cosine of x
sinh(x) Hyperbolic sine of x
tanh(x) Hyperbolic tangent of x
Other functions

ceil(x) x rounded up to the nearest integer
exp(x) e to the x power (%)
fabs(x) Absolute value of x.
floor(x) x rounded down to the nearest integer
fmod(x.y) Remainder of x/y
log(x) Natural log of x, x > 0
log10(x) Base 10 log of x, x > 0
pow(X.y) x to the power y (x*)
sqrt(x)

x and y should be declared as double.

Square root of x, x > =10

1.
2. In trigonometric and hyperbolic functions, x and y are in radians.
3.

All the functions return a double.

Operators and Expressions I 73

As pointed out earlier in Chapter 1, to use any of these functions in a program, we should include the

line:

#include <math.h>

in the beginning of the program.

Just Remember

’l;‘

Use decrement and increment operators carefully. Understand the difference
between postfix and prefix operations before using them.

Add parentheses wherever you feel they would help to make the evaluation order
clear.

Be aware of side effects produced by some expressions.

Avoid any attempt to divide by zero. It is normally undefined. It will either result
in a fatal error or in incorrect results.

Do not forget a semicolon at the end of an expression.

Understand clearly the precedence of operators in an expression. Use parenthe-
ses, if necessary.

Associativity is applied when more than one operator of the same precedence are
used in an expression. Understand which operators associate from right to left
and which associate from left to right.

Do not use increment or decrement operators with any expression other than a
variable identifier.

It is illegal to apply modules operator % with anything other than integers.

Do not use a variable in an expression before it has been assigned a value.
Integer division always truncates the decimal part of the result. Use it carefully.
Use casting where necessary.

The result of an expression is converted to the type of the variable on the left of
the assignment before assigning the value to it. Be careful about the loss of infor-
mation during the conversion.

All mathematical functions implement double type parameters and returndouble
type values.

It is an error if any space appears between the two symbols of the operators ==,
1= <= and >=.

It is an error if the two symbols of the operators !=, <= and >= are reversed.
Use spaces on either side of binary operator to improve the readability of the
code.

Do not use increment and decrement operators to floating point variables.

Do not confuse the equality operator == with the assignment operator =.

CASE STUDIES

i. Salesman’s Salary

A computer manufacturing company has the following monthly compensation policy to their sales-

persons:

Minimum base salary : 1500.00

74 I Programming in ANSI C

Bonus tor every computer sold o 200.00

Commission on the total monthly sales 2 per cent

Since the prices of computers are changing. the sales price of each computer is fixed at the begin-
ning of every month. A program to compute a sales-person’s gross salary is given in Fig. 3.9.

Program
#define BASE SALARY 1500.00
#define BONUS RATE 200.00
#define COMMISSION 0.02

main{)
int quantity ;
float gross calary, price ;
float bonus, commission ;

printf{"Input number sold and price\n") ;
scanf("%d %f", &quantity, &price) ;

bonus = BONUS_RATE * quantity ;
commission = COMMISSION * quantity * price ;
gross_salary = BASE SALARY + bonus + commission ;
printf("\n");
printf("Bonus = %6.2f\n", bonus) ;
printf("Commission = %6.2f\n", commission) ;
printf("Gross salary = %6.2f\n", gross salary) ;
}
Output

Input number <old and price
5 20450.00

Bonus = 1000.00
Commission = 2045.00
Gross salary = 4545.00

Kig. 3.9 Program of salesman’s salary

Given the base salary, bonus, and commission rate, the inputs necessary to calculate the gross
salary are, the price of each computer and the number sold during the month.
The gross salary is given by the equation:

Gross salary = base salary + (quantity * bonus rate)

+ (quantity * Price) * commission rate
LoRedutooeg o the sETaaat i eyt

An equation of the form

Y
ax” fhx e o 0

Operators and Expressions 75

is knowsi as the guadratic equadion. The values of X that satisty the equation are known as the roots
of the equation. A quadratic equation has two roots which are given by the following two formulae:
- b +sart(b™ —4ac)

root 1 = —— b
2a

~bh - ::.qn(b" — dac)

root 2 =

2a

A program to evatuate these roots is given in Fig. 3.10. The program requests the user to input the
values of a. b and ¢ and outputs root 1 and root 2.

Program
#include <math.h>

main()
{
fioat a, b, c, discriminant,
rootl, roontZ;

printf("Input values of a, b, and c\n");
scanf("sf %f %f", &a, &b, &c);

discriminant = b*b - 4*a*c ;
if(discriminant < 0)
printf(“\n\nROOTS ARE IMAGINARY\n");

else
{
rootl = (-b + sgrt(discriminant))/(2.0*a);
root? = (-b - sgrt(discriminant))/(2.0%a);
printf("\n\nRootl = %5.2f\n\nRoot2 = %5.2f\n",
rootl,rcot2);
}
}
Output
Input values of a, b, and ¢
2 4 -16

Rootl = 2.00
Root? = -4.00

Input values of a, b, and c
123

76 |

Programming in ANSI C

ROOTS ARE IMAGINARY

Fig. 3.10 Solution of a quadratic equation

The term (b- —4ac\ 1s called the discriminant. If the discriminant is less than zero, its square roots
cannot be evaluated. In such cases. the roots are said to be i imaginary numbers and the program
outputs an appropriate message.

REVIEW QUESTIONS

3.1

R

33

State whether the following statements are rue or false.
(a) Allarithmetic operators have the same fevel ot precedence.
(b) The modulus operator %5 can be used only with integers.
(¢) The operators <= = and != all enjoy the same level of priority.
(d) During modulo division. the sign of the result is positive. if both the operands are of the
same sign.
{e) In C.if a data item is zero. it is considered false.
(f) The expression /(x<=y) is same as the expression x>1.
(g) Aunary expression consists of only one operand with no operators.
(h) Associativity is used to decide which of several different expressions 1s evaluated first.
(1) Anexpression statement is terminated with a period.
(J) During the evaluation of mixed expressions. an implicit cast is generaied automatically.
(k) Anexplicit cast can be used to change the expression.
(1) Parentheses can be used to change the order of evaluation expressions.
ilfin the blanks with appropriate words.
) The expression containing all the integer operands is called expression.
)) Theoperator cannot be used with real operands.
)
)

o

;
b
Csupportsas many as _ relational operators.

An expression that combines two or more relational expressions is termed as
_expression.

F
(¢
(
(
(

(¢) The operator returns the number of bytes the operand occupies.

() The order of evaluation can be changed by using In an expression.

(g) Theuseof _ onavariable can change its type in the memory.

(hy _~ isused to determine the order in which different operators in an expression
are evaluated.

Given the statement

mta=10.b= 20, c:

determine whether each of the following statements are true or false.

(a) The statementa =+ 10, is valid.

{b) The expression a + 4/6 * 6,2 evaluates to 11,

(c) The expression b + 32 * 2.3 evaluates to 20,

(d) The statement a + == bz gives the values 30 to a and 20 to b.

Operators and Expressions I 77

(e) The statement ++a++; gives the value 12 to a

(f) The statement a = 1/b; assigns the value 0.5to a
3.4 Declared a as inr and b as float, state whether the following statements are true or false.

(a) The statementa = 1/3 + 1/3 + 1/3; assigns the value 1 to a.

(b) The statement b =1.0/3.0 + 1.0/3.0 + 1.0/3.0; assigns a value 1.0 to b.

(¢) The statement b= 1.0/3.0 * 3.0 gives a value 1.0 to b.

(d) The statement b = 1.0/3.0 +2.0/3.0 assigns a value 1.0 to b.

(e) The statementa = 15/10.0 + 3/2; assigns a value 3 to a.
3.5 Which of the following expressions are true?

(a) (5 +5>=10)

(b) 5+5==10}11+3==5

(c) 5>10]10<20&&3<5

(d) 10! =15 && 1(10<20) || 15> 30
3.6 Which of the following arithmetic expressions are valid ? If valid, give the value of the ex-

pression; otherwise give reason.

(a) 25/3%2 (e)-14%3
(b) +9/4 +5 (f) 15.25 + - 5.0
(c) 7.5 % 3 (2)(5/3)*3+5%3

(d) 14%3+7%2 (h)21] % (inH4.5
3.7 Write C assignment statements to evaluate the following equations:
(a) Area= x> +2 mrh

2mym,

(b) Torque = - .
m, +m,

(¢) Side = \/a2 +b” -2ab cos(x)

: : elocity)’
(d) Energy = mass [acceleratlon x height + (l?l—o—;i}

3.8 Identify unnecessary parentheses in the following arithmetic expressions.
(a) ((x=(y/5)+z)%8) + 25
(b) ((x=y) *p)tq
(c) (m*n)+ (=x/y)
(d) x/(3*y)

3.9 Find errors, if any, in the following assignment statements and rectify them.
(a) x =y =12z =0.5, 2.0. -5.75;

(b) m = ++a * 5;
(c) y = sqrt(100);
(dy p* = x/y;

() s = /5;

(fy a = b++ —c*2

3.10 Determine the value of each of the following logical expressions ifa=35,b=10and ¢ =-6
(a) a>b&&a<c
(by a<b&&a>c
(c) a==c|/b>a

78|

Programming in ANSI C

(d) b>15&&c<01a>0
(e) (2/2.0 == 0.0 && b/2.0 '= 0.0) || ¢ < 0.0

PROGRAMMING EXERCISES

3.1

8]
%)

3.4

(%]
N

3.6

3.7

Given the values of the variables x. y and z, write a program to rotate their values such that x
has the value of v, y has the value of z, and z has the value of x.

Write a program that reads a floating-point number and then displays the right-most digit of
the integral part of the number.

Modity the above program to display the two right-most digits of the integral part of the
number.

Write a program that will obtain the length and width of a rectangle from the user and compute
its area and perimeter.

Given an integer number, write a program that displays the number as follows:

First line o alldigits

Secondline : all except first digit
Thirdline : all except first two digits
Last line : Thelast digit

For example. the number 5678 will be displayed as:

5678
678
78
N

The straight-line method of computing the yearly depreciation of the value of anitem is given
by

Purchase Price — Salvage Value

Depreciation = -
Years of Service
Write a program to determine the salvage value of an item when the purchase price, years of
service, and the annual depreciation are given.
Write a program that will read a real number from the keyboard and print the following output
in one line:

Smallest integer The given Largest integer
not less than number not greater than
the number the number

The total distance travelled by a vehicle in # seconds is given by
distance = ut + (ar').2

Where i is the initial velocity (metres per second), a is the acceleration (metres per second-).
Write a program to evaluate the distance travelled at regular intervals of time. given the val-

3.9

Operators and Expressions 79

ues of v and a. The program should provide the flexibility to the user to select his own time
intervals and repeat the calculations for different values of « and a.
In inventory management, the Economic Order Quantity for a single item is given by

2 x demand rate X setup costs

E0Q - |

\ holding cost per item per unit time

and the optimal Time Between Orders

TBO = | _ 2Zxsetup costs B
\/ demand rate X holding cost per item per unit time
Write a program to compute EOQ and TBO, given demand rate (items per unit time}, setup
costs (per order), and the holding cost (per item per unit time).
For a certain electrical circuit with an inductance L and resistance R, the damped natural
frequency is given by

Frequency = -
! Vic 4c?

[t is desired to study the variation of this frequency with C (capacitance). Write a program to

calculate the frequency for different values of C starting from 0.01 to 0.1 in steps of 0.01.

Chapter

Managing Input and
Output Operations

4.1 INTRODUCTION

Reading, processing, and writing of data are the three essential functions of a computer program.
Most programs take some data as input and display the processed data, often known as information
or results, on a suitable medium. So far we have seen two methods of providing data to the program
variables. One method is to assign values to variables through the assignment statements such as x =
5; a = 05 and so on. Another method is to use the input function scanf which can read data from a
keyboard. We have used both the methods in most of our earlier example programs. For outputting
results we have used extensively the function printf which sends results out to a terminal.

Unlike other high-level languages, C does not have any built-in input/output statements as part of
its syntax. All input/output operations are carried out through function calls such as printf and scanf.
There exist several functions that have more or less become standard for input and output operations
in C. These functions are collectively known as the standard I/O library. In this chapter we shall
discuss some common I/O functions that can be used on many machines without any change. How-
ever, one should consult the system reference manual for exact details of these functions and also to’
see what other functions are available.

It may be recalled that we have included a statement

#include <math.h>

in the Sample Program 5 in Chapter 1, where a math library function cos(x) has been used. This is to
instruct the compiler to fetch the function cos(x) from the math library, and that it is not a part of C
language. Similarly, each program that uses a standard input/output function must contain the state-
ment

#include <stdio.h>

at the beginning. However, there might be exceptions. For example, this is not necessary for the
functions printf and scanf which have been defined as a part of the C language.

Managing Input and Output Operations 81

The tile name stdio.h is an abbrevation tor standard input-output header fite. The instruction
#include <stdio. h> tells the compiler “to search for a file named stdio.h and place its contents at this
point in the program’. The contents of the header file become part of the source code when it is
comptied.

The siraplest of all input-output operations is reading a character frorm ihe “standard input’ unit (usu-
aliv the keyboard) and writing it to the “standard output” unit (usually the screen). Reading a single
character can be done by using the function getchar. (This can also be done with the help ot the scanf
function which is discussed in Section 4.4.) The getchar takes the following form:

DETRIIR gerteharl i
variable name is a valid C name that has been declared as char type. When this statement is encoun-
tered. the computer waits until a key is pressed and then assighs this character as a value to getchar
function. Since getehar is used on the right-hand side ot'an assignment statement, the character value
of getchar is in turn assigned to the variable name on the left. For example

char name;
name = getchar():

will assign the character "H' to the variable name when we press the key H on the keyboard. Since
getchar is « function, it requires a set of parentheses as shown.

{_E;(Erﬁp_le*i@ The program in Fig. 4.1 shows the use ot getchar function in an inter-
77 qactive environment

The program displays a question of YESNO type to the user and cads the user’s response in a single
character (Y or N). If the response is Y, it outputs the message

My name is BUSY BEE
otherwise. outputs.

You are good for nothing

Note: There is one line space between the input text and output message.

Program
#include <stdio.h>
main()

!
i

char answer;
printf("Would you like to know my name?\n");

printf("Type Y for YES and N for RNO: “3s
answer = getchar(); /* Reading a character...*/
if(answer == 'Y' || answer == 'y')
printf("\n\nMy name is BUSY BEE\n");
else

82 ' Programming in ANSI C

printf(“\n\nYou are good for nothing\n");

)

}
Output

Would you like to know my name?
Type Y for YES and N for NO: Y

My name is BUSY BEE

Would you like to know my name?
Type Y for YES and N for NO: n

You are good for nothing

Fig. 4.1 Use of getchar function to read a character from kevboard

The getchar function may be called successively to read the characters contained in a line of text. For
example, the following program segment reads characters from keyboard one after another until the
‘Return” key is pressed.

char character;
character = ' *;
while(character i= '\n'j
{

character = getchar();
1

6 WARNING j

The getchar() function accepts any character keyed in. This includes RETURN
and TAB. This means when we enter single character input, the newline charac-
ter is waiting in the input queue after getchar() returms This could create prob-
iems when we use getchar() in a loop interaciively. A dummy getchar(y may be
)1 used to 'eat’ the unwanted newline character. We can also vse the fflush func-
tion to flush out the unwanted characters. J

e

Note: We shall be using decision statements like if. if...else and while extensively i this chapter.

They are discussed in detail in Chapters S and 6.

[E_iﬁﬁbTé'ZE The program of Fig. 4.2 requests the user to enter a character and
T displays a message on the screen telling the user whether the charac-
ter is an alphabet or digit, or any other special character
This program receives a character from the keyboard and tests whether it is a letter or digitand prints
out a message accordingly. These tests are done with the help of the following tunctions:
isalpha(character)
isdigit(character)

Managing Input and Output Operations

83

For example. isalpha assumes a value non-zero (TRUE) if the argument character contains an

alphabet: otherwise it assumes O (FALSE). Similar is the case with the function isdigit.

{

Output

Program:

#include <stdio.h>
#include <ctype.h>
main()

char character;
printf(“Press any key\n");
character = getchar();
if (isalpha(character) > 0)
printf("The character is a letter.");
eise
if (isdigit (character) > 0)
printf("The character is a digit.");
else

printf(“The character is not alphanumeric.");

Press any key
h
The character is a letter.

Press any key
5
The character is a digit.

Press any key
*

The character is not alphanumeric.

Fig. 4.2 Program to test the character type

C supports many other similar functions, which are given in Table 4.1. These character functions are
contained in the file ctype.h and therefore the statement

#include <ctype.h>

must be included in the program.

Table 4.1 Character Test Functions

Function Test

isalnum(c) Is ¢ an alphanumeric character?
isalpha(c) Is ¢ an alphabetic character?
isdigit(c) Is c a digit?

islower(c) Is ¢ lower case letter?
isprint(c) Is ¢ a printable character?

(Contd.)

84 I Programming in ANSI C

Table 4.1 (Contd.)

Function Test
ispunct(c) Is ¢ a punctuation mark?
isspace(c) Is ¢ a white space character?
isupper(c) Is ¢ an upper case letter?

2.3 WR

Yeus

TING A CHARACTER

Like getchar, there is an analogous function putchar for writing characters one at a time to the
terminal. It takes the form as shown below:

patchiar Coariable wamic);

where variable_name is a type char variable containing a character. This statement displays the
character contained in the variable_name at the terminal. For example, the statements

answer = 'Y';

putchar (answer);

will display the character Y on the screen. The statement
putchar ('\n');
would cause the cursor on the screen to move to the beginning of the next line.

Example 4. A program that reads a character from keyboard and then prints it in

reverse case is given in Fig. 4.3. That is, if the input is upper case, the
output will be lower case and vice versa.

The program uses three new functions: islower, toupper, and tolower. The function islower is a
conditional function and takes the value TRUE if the argument is a lowercase alphabet; otherwise
takes the value FALSE. The function toupper converts the lowercase argument into an uppercase
alphabet while the function tolower does the reverse.

Program
#include <stdio.h>
#include <ctype.h>
main()
{
char alphabet;
printf("Enter an alphabet");
putchar('\n'); /* move to next line */.
alphabet = getchar();
if (islower(alphabet))
putchar(toupper(alphabet));
else
putchar(tolower(alphabet));
}

Output

Enter an alphabet

Managing Input and Output Operations I 85

a
A
Enter an alphabet
Q
q
Enter an alphabet
z
Z

Fig. 4.3 Reading and writing of alphabets in reverse case

4.4 FORMATTED INPUT

Formatted input refers to an input data that has been arranged in a particular format. For example,
consider the following data:

15.75 123 John

This line contains three pieces of data, arranged in a particular form. Such data has to be read
conforming to the format of its appearance. For example, the first part of the data should be read into
a variable float, the second intoint, and the third part into char. This is possible in C using the scanf
function. (scanfmeans scan formatted.)

We have already used this input function in a number of examples. Here, we shall explore all of
the options that are available for reading the formatted data withscanf function. The general form of
scanf is

scand Ccontralstrong Y arglL arg 2, L argn);

The control string specifies the field format in which the data is to be entered and the arguments
argl, arg2, ..., argn specify the address of locations where the data is stored. Control string and
arguments are separated by commas.
~ Control string (also known as format string) contains field specifications, which direct the inter-
pretation of input data. It may include:
e Field (or format) specifications, consisting of the conversion character %, a data type
character (or type specifier), and an optional number, specitying the field width.
¢ Blanks, tabs, or newlines.
Blanks, tabs and newlines are ignored. The data type character indicates the type of data that is to
be assigned to the variable associated with the corresponding argument. The tield width specifier is
optional. The discussions that follow will clarify these concepts.

Inputting Integer Numbers

The field specification for reading an integer number is:

0

% wd

The percent sign (%) indicates that a conversion specification follows. w is an integer number that
specifies the field width of the number to be read and d, known as data type character, indicates that
the number to be read is in integer mode. Consider the following example:

86 I Programming in ANSI C
scanf ("%2d %5d", &numl, &num2);

Data line:
50 31426
The value 50 is assigned to numl and 31426 to num2. Suppose the input data is as follows:
| 31426 50

The variable num1 will be assigned 31 (because of %2d) and num2 will be assigned 420 (unread
part of 31426). The value 50 that is unread will be assigned to the first variable in the nextscant call.
This kind of errors may be eliminated if we use the field specifications without the field width speci-
tications. That is. the statemcent

scanf("%d %d", &numl, &num2);
will read the data
31426 50

correctly and assign 31426 to num1 and 50 to num?2.

Input data items must be separated by spaces. tabs or newlines. Punctuation marks do not count as
separators. When the scanf function searches the input data line for a value to be read. it will alwavs
bypass any white space characters.

What happens if we enter a floating point number instead of an integer? The fractional part may be
stripped away! Also, scanf may skip reading further input.

When the scanf reads a particular value, reading of the value will be terminated as soon as il
number of characters specified by the field width is reached (if specified) or until a character thar is
not valid tor the value being read 1s encountered. In the case of integers. valid characters are an
optionally signed sequence ot digits.

An input field may be skipped by specitying * in the place of field width. For example. the state-
ment

scanf("%d %*d %d", &a, &b)
will assign the data
123 456 789
as follows:
123 to a
456 skipped (because of *)
789 to b

The data type character d may be preceded by ‘1" (letter ell) to read long integers and h to read short
integers.

Note: We have provided white space between the field specifications. These spaces are not necessary
with the numeric input, but it is a good practice to include them.

r‘E—xomple 4.4) Various input formatting options for reading integers are experi-
mented in the program shown in Fig. 4.4.

Managing Input and Output Operations

|87

Program
main()
{
int a,b,c,x,y,2;
int p,q,r;

printf("Enter three integer numbers\n");
scanf("%d %*d %d",&a,&b,&c);
printf("%d %d %d \n\n",a,b,c);

printf("Enter two 4-digit numbers\n");
scanf("%2d %4d",&x,8y);
printf("%d %d\n\n", x,y);

printf("Enter two integers\n");
scanf("%d %d", &a,&x);
printf("%d %d \n\n",a,x);

printf("Enter a nine digit number\n");
scanf("%3d %4d %3d",&p,8&q,&r);
printf("%d %d %d \r\n",p,q,7r);

printf("Enter two three digit numbers\n");
scanf("sd %d",&x,&y);
printf("%d %d",x,y);

Output
Enter three integer numbers
123
13 -3577
Enter two 4-digit numbers
6789 4321
67 89

Enter two integers

44 66

4321 44
Enter a nine-digit number
123456789
66 1234 567
Enter two three-digit numbers
123 456
89 123

Fig. 4.4 Reading integers using scanf

88 Programming in ANSIC

The firstscanfrequests input data for three integer values a, b, and ¢, and accordingly three values 1,
2.and 3 are keyed in. Because of the specification %*d the value 2 has been skipped and 3 is assigned
to the variable b. Notice that since no data is available for ¢, it contains garbage.

The second scanf specifies the format %2d and %4d for the variables x and y respectively. When-
ever we specity field width for reading integer numbers, the input numbers should not contain more
digits that the specified size. Otherwise, the extra digits on the right-hand side will be truncated and
assigned to the next variable in the list. Thus, the second scanf has truncated the four digit number
6789 and assigned 67 to x and 89 to y. The value 4321 has been assigned to the first variable in the
immediately following scanf statement.

Note: It is legal to use a non-whitespace character between field specifications. However, the scanf
expects a matching character in the given location. For example,

scanf"%d-%d", &a, &b);
accepts input like
123-456

to assign 123 to a and 456 to b.
Inputting Real Muaibers

Unlike integer numbers, the field width of real numbers is not to be specified and therefore scanf
reads real numbers using the simple specification %f for both the notations, namely, decimal point
notation and exponential notation. For example, the statement

scanf ("%f %f %f", &x, &y, &z);
with the input data

475.89 43.21E-1 678
will assign the value 475.89 to x, 4.321 to v, and 678.0 to z. The input field specifications may be
separated by any arbitrary blank spaces.

If the number to be read is of double type. then the specification should be %If instead of simple

%f. A number may be skipped using % *f specification.

Example 4.5 Reading of real numbers (in both decimal point and exponential no-
tation) is illustrated in Fig. 4.5.

Program
main()
{
float x,y;
double p,q;

printf("Values of x and y:");
scanf("%f %e", &x, &y);
printf("\n");

printf("x = %f\ny = %f\n\n", x, y);

Managing Input and Output Operations | 89

printf("values of p and g:");
scanf("%1f %1f", &p, &q);
printf("\n\np = %.121f\np = %.12e", p,q);

OQutput

Values of x and y:12.3456 17.5e-2
x = 12.345600
y = 0.175000

values of p and q:4.142857142857 18.5678901234567890

4.142857142857
1.856789012346e+001

p
q

Fig. 4.5 Reading of real numbers

Furatiing Character Strings

We have already seen how a single character can be read from the terminal using the getchar func-
tion. The same can be achieved using the scanf function also. In addition, a scanf function can input
strings containing more than one character. Following are the specifications for reading character
strings:

(838

The corresponding argument should be a pointer to a character array. However. %c may be used to
read a single character when the argument is a pointer to a char variable.

[Example 4.6] Reading of strings using %we and %ws s illustrated in Fig. 4.6.

The program in Fig. 4.6 illustrates the use of various field specifications for reading strings. When we
use Y%we for reading a string, the system will wait until the wi character is keyed in.

Note that the specification %s terminates reading at the encounter of a blank space. Therefore,
name2 has read only the first part of “New York™ and the second part is automatically assigned to
name3. However, during the second run, the string “New-York™ is correctly assigned to name2.

Program

main()

{
int no;
char namel[15], name2[15], name3[15];
printf("Enter serial number and name one\n");
scanf("%d %15¢", &no, namel);
printf("%d %15s\n\n", no, namel);

90 | Programming in ANSI C

Output
Enter serial number and
1 123456789012345
1 123456789012345r
Enter serial number and

2 New York

2 New

Enter serial number and
2 York

Enter serial number and
1 123456789012

1 123456789012r

Enter serial number and

2 New-York

2 New-York
Enter serial number and
3 London

3 London

name

name

name

name

name

name

printf("Enter serial number and name two\n");
scanf("%d %s", &no, name2);
printf("%d %15s\n\n", no, name2);
printf("Enter serial number and name three\n");

scanf("%d %15s", &no, name3);
printf("%d %15s\n\n", no, name3);

one

two

three

one

two

three

Fig. 4.6 Reading of strings

Some versions of seanf support the following conversion specifications for strings:

%[characters]

%[~characters]

The specification %|[characters] means that only the characters specified within the brackets are
permissible in the input string. If the input string contains any other character, the string will be
terminated at the first encounter of such a character. The specification %] ~characters] does exactly
the reverse. That is, the characters specified after the circumflex (") are not permitted in the input
string. The reading of the string will be terminated at the encounter of one of these characters.

Example 4.7, The program in Fig. 4.7 illustrates the function of %[] specification

e

Program-A
main()

{
char address[80];

Managing Input and Output Operations I 91

printf("Enter address\n");
scanf("%[a-z]", address);
printf("%-80s\n\n", address);

Qutput

Enter address
new delhi 110002
new delhi

Program-B
main()
{
char address{80];

printf("Enter address\n");
scanf("%{™\n]", address);
printf("%-80s", address);

Output
Enter address
New Delhi 110 002
New Delhi 110 002

Fig. 4.7 Illustration of conversion specification%|.] for strings

@ Reading Blank Spaces)

We have earlier seen that %s specifier cannot be used to read strings with blank
spaces. But, this can be done with the help of %[] specification. Blank spaces
may be included within the brackets, thus enabling the scanf to read strings with
(I spaces. Remember that the lowercase and uppercase letters are distinct. See

y, Fig. 4.7.

Cening Mived Data Types

It is possible to. use one scanf statement to input a data line containing mixed mode data. In such
cases. care should be exercised to ensure that the input data items match the control specifications in
order and type. When an attempt is made to read an item that does not match the type expected, the
seanf function does not read any further and immediately returns the values read. The statement
scanf ("%d %c %f %s", &count, &code, &ratio, name) ;
will read the data
15 p 1.575 coffee

correctly and assign the values to the variables in the order in which they appear. Some systems
accept integers in the place of real numbers and vice versa, and the input data is converted to the type
specified in the control string.

92 Programming in ANSI C

Note: A space before the %c specification in the format string is necessary to skip the white space
before p.

Detection of Errors in Input

When a scanf function completes reading its list, it returns the value of number of items that are
successfully read. This value can be used to test whether any errors occurred in reading the input. For
example, the statement

scanf("%d %f %s, &a, &b, name);
will return the value 3 if the following data is typed in:

20 150.25 motor
and will return the value 1 if the following line is entered

20 motor 150.25

This is because the function would encounter a string when it was expecting a floating-point value,
and would therefore terminate its scan after reading the first value.

Example 4.8) The program presented in Fig.4.8 illustrates the testing for correctness

of reading of data by scanf function.

The function scanf is expected to read three items of data and therefore, when the values for all the
three variables are read correctly, the program prints out their values. During the third run, the second
item does not match with the type of variable and therefore the reading is terminated and the error
message is printed. Same is the case with the fourth run.

In the last run, although data items do not match the variables, no error message has been printed.
When we attempt to read a real number for anint variable, the integer part is assigned to the variable,
and the truncated decimal part is assigned to the next variable.

Note that the character 2 is assigned to the character variable c.

Program
main()
{
int a;
float b;
char c;
printf("Enter values of a, b and c\n");
if (scanf("%d %f %c", &a, &b, &c) == 3)
printf("a = %d b = %f ¢ = %c\n" , a, b, c);
else
printf("Error in input.\n");

Output

Enter values of a, b and ¢
12 3.45 A

Managing Input and Output Operations

a =12 b = 3.450000 c=A
Enter values of a, b and ¢
2378 9

a =23 b = 78.000000 ¢ =9

Enter values of a, b and ¢

8 A 5.25

Error in input.

Enter values of a, b and ¢

Y 12 67

Error in input.

Enter values of a, b and ¢
15.75 23 X

a =15 b = 0.750000 c =2

93

Fig. 4.8 Detection of errors in scanf input

Commonly used scanf format codes are given in Table 4.2

Table 4.2 Commonly used scanf Format Codes

Code

%oc
%d
%e
%t
° 0g
%h
%oi

%0
%s
%u

%X

Meaning

read a single character
read a decimal integer
read a floating point value
read a floating point value
read a floating point value
read a short integer

read a decimal, hexadecimal or octal integer

read an octal integer

read a string

read an unsigned decimal integer
read a hexadecimal integer

read a string of word(s)

The following letters may be used as prefix for certain conversion characters.

h for short integers

| for long integers or double

L forlong double

Points to Remember While Using scanf

If we do not plan carefully, some ‘crazy’ things can happen withscanf. Since the [/O routines are not
a part of C language, they are made available either as a separate module of the C library or as a part
of the operating system (like UNIX). New features are added to these routines from time to time as
new versions of systems are released. We should consult the system reference manual before using
these routines. Given below are some of the general points to keep in mind while writing a scanf

statement.

94| Programming in ANSI C

All function arguments, except the control string, muse be pointers to variables.

Format specifications contained in the control string should match the arguments in order.

Input data items must be separated by spaces and must match the variables receiving the input

in the same order.

4. The reading will be terminated, when scanf encounters a “mismatch’ of data or a character
that is not valid for the value being read.

5. When searching for a value. scanf ignores line boundaries and simply looks for the next
appropriate character.

6. Any unread data items in a line will be considered as part of the data input line to the next
scanf call.

7. When the field width specifier w is used. it should be large enough to contain the input data

size.

@ Rules for scanf >

e [Each variable to be read must have a filed specification.

‘92 DI e

e Foreach field specification, there must be a variable address of proper type.

* Any non-whitespace character used in the format string must have a match-
ing character in the user input.

e Never end the format string with whitespace. It is a fatal error!

o The scanf reads until:
- A whitespace character is found in a numberic specification, or
- The maximum number of characters have been read or

- An error is detected, or

@ - The end of file is reached

4.5 FORMATTED OQu7PUT

We have seen the use of printf function for printing captions and numerical results. It is highly
desirable that the outputs are produced in such a way that they are understandable and are in an casy-
to-use form. It is therefore necessary for the programmer to give careful consideration to the appear-
ance and clarity of the output produced by his program.

The printf statement provides certain features that can be effectively exploited to control the
align;nem and spacing of print-outs on the terminals. The general form of printf statement is

rintf(“control string ", arel, arg? ... argny,
£ &

Control string consists of three types of items:
1. Characters that will be printed on the screen as they appear.

Managing Input and Output Operations I 95

2. Format specifications that detine the output format for display of each item.
3. Escape sequence characters such as 'n, 't. and 'b.

The control string indicates how many arguments follow and what their types are. The arguments
argl, arg2, argn are the variables whose values are formatted and printed according to the
specifications of the control string. The arguments should match in number, order and type with the
format specifications.

A simple format specitication has the following form:

pialits

where w is an integer number that specitfies the total number of columns for the output value andp 1$
another integer number that specifies the number of digits to the right of the decimal point (of a real
number) or the number of characters to be printed from a string. Both w and p are optional. Some
examples of formatted printf statement are:

printf("Programming in C");
’ printf(" ");

printf("\n");

printf("%d", x);

printf("a = %f\n b = %f", a, b);

printf("sum = %d", 1234);

printf("\n\n");
printf never supplies a newl/ine automatically and therefore multiple printf statements may be used
to build one line of output. A newline can be introduced by the help of a newline character “n’ as
shown in some of the examples above.

-

s By o 2

SULT RN

The format specification for printing an integer number is

where w specifies the minimum field width for the output. However, if a number is greater than the
specified ficld width, it will be printed in full. overriding the minimum specification. d specifies that
the value to be printed is an integer. The number is written right-justified in the given field width.
Leading blanks will appear as necessary. The following examples illustrate the output of the number
9876 under different formats:

Format Output
printf(*%5d”, 9876) 9787]6]
printf(*%66d™, 9876) 9 87 6

printf(*%2d”. 9876) 98 7 6

96 I Programming in ANSI C

printf(“%-6d”, 9876) 9876 |]

printf(**%06d", 9876) 0/0/9 8[7]6]
It is possible to force the printing to be left-justified by placing a minus sign directly after the %
character, as shown in the fourth example above. It is also possible to pad with zeros the leading
blanks by placing a 0 (zero) before the field width specifier as shown in the last item above. The
minus (-) and zero (0) are known as flags.
Long integers may be printed by specifying Id in the place of d in the format specification. Simi-
larly, we may use hd for printing short integers.

Example 4.9] The program in Fig. 4.9 illustrates the output of integer numbers under
various formats.

Program
main()
{
int m = 12345;
long n = 987654;

printf("%d\n",m);
printf("%10d\n",m);
printf("%010d\n",m);
printf("%-10d\n",m);
printf("%101d\n",n);
printf("%101d\n",-n);

Output
12345
12345
0000012345
12345
987654
- 987654

Fig. 4.9 Formatied output of integers

Output of Real Numbers

The output of a real number may be displayed in decimal notation using the following format specifi-
cation:

Yo w.p f

The integer w indicates the minimum number of positions that are to be used for the display of the
value and the integer p indicates the number of digits to be displayed after the decimal point (preci-

Managing Input and Output Operations |97

sion). The value, when displayed, is rounded to p decimal places and printed right-justified in the
field of w columns. Leading blanks and trailing zeros will appear as necessary. The default preci-
sion is 6 decimal places. The negative numbers will be printed with the minus sign. The number
will be displayed in the form [- | mmm-nnn. :

We can also display a real number in exponential notation by using the specification

RIS N

The display takes the form

- Vmonanne] & dxx

where the length of the string of n’s is specified by the precision p. The default precision is 6. The
field width w should satisfy the condition.
= pt7

The value will be rounded off and printed right justified in the field of w columns.

Padding the leading blanks with zeros and printing with lefi-justification are also possible by
using flags 0 or — before the ficld width specifier w.

The following examples illustrate the output of the number y = 98.7654 under different format
specifications:

Format Output
printf(*%7.4f".y) 98 .. 76,5 4]
printf(*%7.2f",y) 98 .7 7]
printf(*%-7.2£".y) 98 T 7
printf(“%f™,y) 98 7.6 5 4
print7610.26°) S w0
printf(*%11.4¢".-y) [-Tol I8 7]6[s5]el+]0]1]
printf(*“%-10.2¢".y) 1918 |8 le|+ {0 (1] [|
printf(“%e".y) 79". 8 7 6 5 4 0 e + 0 1

Some systems also support a special field specitication (,hdrdttu‘ that lets the user deﬁne the ﬁeld size
at run time. This takes the following torm:

printd% 7, width, precision, numbery:

In this case, both the field width and the precision are given as arguments which will supply the
values for w and p. For example.

98 Programming in ANSI C

printf("%*.*f",7,2,number);
is equivalent to
printf("%7.2f",number);
The advantage of this format is that the values for width and precision may be supplied at run time.
thus making the format a dyvnamic one. For example, the above statement can be used as follows
int width = 7;
int precision = 2;

printf("%*.*f", width, precision, number);

| Example 4.10 All the options of printing a real number are illustrated in Fig. 4.10.

Program
main()
{

t

float y = 98.7654;

printf("%7.4f\n", y);
printf("%f\n", y);
printf("%7.2f\n", y);
printf("%-7.2f\n", y);
printf("%07.2f\n", y);
printf("s*.*f", 7, 2, y);
printf("\n");
printf("%10.2e\n", y);
printf("%12.4e\n", -y);
printf("%-10.2e\n", y)
printf("%e\n", y);

Output
98.7654
98.765404
98.77
98.77
0098.77
98.77
9.88e+001
-9.8765e+001
9.88e+001
9.876540e+001

Fig. 4.10 Formauted output of real numbers

Managing Input and Output Operations |99

PR R
Loaodntracter

A single character can be displayed in a desired position using the format

The character will be displayed right-justified in the field of w columns. We can make the display
lefi-justified by placing a minus sign before the integer w. The default value for w is 1.

o oen
R el g vens
4l HaVEDYR

The format specification for outputting strings is similar to that of real numbers. It is of the form

where w specifics the field width for display and p instructs that only the first p characters of the
string are to be displaved. The display is right-justified.

The following examples show the effect of variety of specifications in printing a string “NEW
DELHI 1100017, containing 16 characters (including blanks).

Specification Output

123 45678 9012345678 90
%s NEWwW DELHI t'10001
%20s | NEW DELH I 11000 f
%20.10s L L UNEW DELH I
%.55 NEW DO R
w2010 NEW D ELH [
%5s NEw DELH 1 110001

{ Example 4.11 | Printing of characters and strings is illustrated in Fig. 4.11.

Program
main()
{
char x = 'A';
char name[20] = "ANIL KUMAR GUPTA";

100 I Programming in ANSI C

printf("OUTPUT OF CHARACTERS\n\n");
printf("%c\n%3c\n%5c\n", x,x,x);
printf("%3c\n%c\n", x,x);
printf("\n");

printf("OUTPUT OF STRINGS\n\n");
printf("%s\n", name);
printf("%20s\n", name);
printf("%20.10s\n", name);
printf("%.5s\n", name);
printf("%-20.10s\n", name);
printf("%5s\n", name);

Output
OUTPUT OF CHARACTERS
A
A

A
A
OUTPUT OF STRINGS
ANIL KUMAR GUPTA
ANIL KUMAR GUPTA
ANIL KUMAR
ANTL
ANIL KUMAR
ANIL KUMAR GUPTA

Fig. 4.11 Printing of characters and strings

Mixed Data Output

It is permitted to mix data types in one printf statement. For example, the statement of the type
printf("%d %f %s %c", a, b, c, d);

is valid. As pointed out earlier, printf uses its control string to decide how many variables to be

printed and what their types are. Therefore, the format specifications should match the variables in

number, order, and type. If there are not enough variables or if they are of the wrong type, the
output results will be incorrect.

Table 4.3 Commonly used printf Format Codes

Code Meaning
%oc print a single character
%d print a decimal integer

%e rint a floating point value in exponent form
p gp p

